

Réunion Internationale des Laboratoires et Experts des Matériaux

TC 281-CCC: Carbonation of concrete with SCM

WG4: Effect of combined actions: load + carbonation

Updated plan of the 2nd round comparative test of WG4

China Building Materials Academy

17 Feb., 2021

Updated plan of the 2nd round comparative test of WG4

- 1. Participating Labs and Timetable
- 2. Scope
- 3. Equipment
- 4. Mix Design
- **5. Preparation of Test Samples**
- 6. Confirmed plan for 2nd round test

1. Participating Labs and Timetable

No.	Leader	Labs	Time
1	Yan Yao	СВМА	Casting & Curing: 2020.10-2021.01Carbonation: 2021.01-2021.02
2	Nele De Belie	UGent	Casting & Curing:Carbonation:
3	Talakokula Visalakshi	Bennett Univ.	Casting & Curing:Carbonation:
4	Zuquan Jin QUT		Casting & Curing:Carbonation:
5	Jingzhou Lu	Yantai Univ.	Casting & Curing:Carbonation:
6	Ivan Ignjatovic	Belgrade Univ.	Casting & Curing:Carbonation:

Duration for the 2^{nd} round comparative test:

• Casting & Curing: 3 months

• Carbonation: 1 month

2. Scope

• To determine durability of concrete with SCMs (FA and/or BFS) under combined actions of carbonation and compressive / tensile load.

➤ Carbonation + compressive load

- Carbonation and compression simultaneously.
- The pre-defined compressive stress ratios for the second round of comparative testing are 0.30, 0.60 (0.80 optional). A comparison will be made with the unloaded condition.
- 3 specimens for each stress ratio.

Carbonation + tensile load (optional)

- Carbonation and tension simultaneously.
- The pre-defined tensile stress ratios for this round of comparative testing are 0.30, 0.60. A comparison will be made with the unloaded condition.
- 3 specimens for each stress ratio.

3. Equipment

> Test rig for compression

- The test rigs were confirmed by 6 labs in the 1st round of comparison test.
- Test rigs, which have the same principle and function and fulfil the requirements of RILEM recommendation of TC 107-CSP can be used as well.
- The applied load shall keep stable during the entire carbonation period. The stress applied to concrete shall be monitored in each lab.

> Test rig for tension

• The test rigs designed by RILEM TC 246-TDC as shown in Fig. 1.

Materials and Structures (2017) 50:155 DOI 10.1617/s11527-017-1000-3

Fig. 1 Test rig for tension

3. Equipment

> Carbonation Chamber

• Temperature: $(20\pm2)^{\circ}\mathrm{C}$

• Relative humidity: $65\% \pm 5\%$

• CO₂ concentration: 2% or 20%

• **Size:** The size of carbonation chamber shall be big enough to contain at least 9 ~ 12 specimens with loading, and the height shall be enough for specimens being vertically placed.

4. Mix Design

• Cement type: CEM I 42.5

• FA: 30% replacement of cement

• BFS: 50% replacement of cement

• Water reducer: Polycarboxylates superplasticizer, concrete slump controlled at (110 \pm 10) mm.

Mix proportions of concrete

No.	Cement (kg/m³)	w/c	SCMs (kg/m³)	Water (kg/m³)	Fine aggregate (kg/m³)	Coarse aggregate (kg/m³)	Superplastizer (kg/m³)	Slump (mm)
OPC	330	0.6	0	198	719	1162	(As needed)	110
FA	231	0.6	99	198	719	1162	(As needed)	110
BFS	165	0.6	165	198	719	1162	(As needed)	110

5. Preparation of specimens

- Concrete specimen for (**compression** + carbonation)
 - Plain concrete without reinforcement.
 - Number: At least 3 cubes and 21 prisms (100×100×300 mm³) for one series (one concrete mix).
 - Group I: 3 cubes for compressive strength test (f_{cc});
 - Group II: 3 prisms for compressive strength test (f_{cp}) ;
 - Group III: 18 prisms for carbonation with stress ratio 0, 0.3, 0.6, (0.8), CO₂ concentration 2% and 20%. (3 stress ratios *2 CO₂ concentrations*3)

	Specimens No. (2% CO ₂)	Specimens No. (20% CO ₂)
OPC	OPC-0-2%, OPC-0.3-2%, OPC-0.6-2%	OPC-0-20%, OPC-0.3-20%, OPC-0.6-20%
FA	FA-0-2%, FA-0.3-2%, FA-0.6-2%	FA-0-20%, FA-0.3-20%, FA-0.6-20%
BFS	BFS-0-2%, BFS-0.3-2%, BFS-0.6-2%	BFS-0-2%, BFS-0.3-20%, BFS-0.6-20%

5. Preparation of specimens

- ➤ Concrete specimen for (<u>tension</u> + carbonation)
 - Plain concrete without reinforcement.

- Number: At least 3 cubes and 21 Dumbbell-shaped samples $(70 \times 70 \times 300 \text{ mm}^3)$ for one series (one concrete mix).
 - Group I: 3 cubes for compressive strength test (f_{cc}) ;
 - Group II: 3 dumbbell for tensile strength test (f_t) ;
 - Group III: 18 dumbbell for carbonation with stress ratio 0, 0.3, 0.6, CO₂ concentration 2% and 20%. (3 stress ratios * 2 CO₂ concentrations *3)

	Specimens No. (2% CO ₂)	Specimens No. (20% CO ₂)
OPC	OPC-0-2%-T, OPC-0.3-2%-T, OPC-0.6-2%-T	OPC-0-20%-T, OPC-0.3-20%-T, OPC-0.6-20%-T
FA	FA-0-2%-T, FA-0.3-2%-T, FA-0.6-2%-T	FA-0-20%-T, FA-0.3-20%-T, FA-0.6-20%-T
BFS	BFS-0-2%-T, BFS-0.3-2%-T, BFS-0.6-2%-T	BFS-0-2%-T, BFS-0.3-20%-T, BFS-0.6-20%-T

5. Preparation of specimens

> Curing and carbonation

Curing and carbonation	Group I	Group II	Group III	
Test aim for each group	3 cubes for f_{cc}	3 prisms for f_{cp} 3 dumbbell samples for f_t	18 prisms or dumbbell specimen for carbonation test with and without load	
Curing in the moulds, air temperature of $20 \ (\pm 2)$ °C, covering with a plastic sheet. ①	1 day	1 day	1 day	
In saturated $Ca(OH)_2$ solution at 20 (± 2) °C. 2	6 days	6 days	6 days	
In climate chamber at 20 (\pm 2) °C and 65 (\pm 5) % RH. ③	84 days	84 days	84 days	
In carbonation chamber at predefined CO_2 concentration, 20 °C and 65 (\pm 5) % RH.			28 days	

Discussion: Is it enough to improve the compressive strength of concrete with SCMs at saturated Ca(OH)₂ solution curing for 6 days? Is it acceptable for a curing method of ① 1 d, ② 69 d, and ③ 21 d?

6. Confirmed plan for 2nd round test

> Compression + carbonation

CO ₂	Mix	Stress ratio	Label	CBMA	UGent	Bennett Univ.	QUT	Yantai Univ.	More labs are welcome to join
	OPC	0.0	OPC-0-2%	V			$\sqrt{}$	×	
		0.3	OPC-0.3-2%				$\sqrt{}$	X	
		0.6	OPC-0.6-2%	$\sqrt{}$			$\sqrt{}$	X	
		0.0	FA-0-2%				$\sqrt{}$	$\sqrt{}$	
2%	FA	0.3	FA-0.3-2%				$\sqrt{}$	$\sqrt{}$	
		0.6	FA-0.6-2%				$\sqrt{}$	$\sqrt{}$	
	BFS	0.0	BFS-0-2%				×	×	
		0.3	BFS-0.3-2%				×	×	
		0.6	BFS-0.6-2%				×	X	
	OPC	0.0	OPC-0-20%	V	×		×	X	
		0.3	OPC-0.3-20%	V	×		×	X	
		0.6	OPC-0.6-20%	V	×		×	X	
		0.0	FA-0-20%	V	×			V	
20%	FA	0.3	FA-0.3-20%	V	×			V	
		0.6	FA-0.6-20%	V	×		$\sqrt{}$	V	
	BFS	0.0	BFS-0-20%	V	×		×	X	
		0.3	BFS-0.3-20%	V	×		×	×	
		0.6	BFS-0.6-20%	V	×		×	×	

Stress ratio 0.80 is optional.

6. Confirmed plan for 2nd round test

> Tension + carbonation (optional)

CO ₂	Mix	Stress ratio	Label	СВМА	UGent	Bennett Univ.	QUT	Yantai Univ.	More labs are welcome to join
		0.0	OPC-0-2%-T	$\sqrt{}$					
	OPC	0.3	OPC-0.3-2%-T	$\sqrt{}$					
		0.6	OPC-0.6-2%-T	$\sqrt{}$					
		0.0	FA-0-2%-T	$\sqrt{}$					
2%	FA	0.3	FA-0.3-2%-T	$\sqrt{}$					
		0.6	FA-0.6-2%-T	$\sqrt{}$					
	BFS	0.0	BFS-0-2%-T	$\sqrt{}$					
		0.3	BFS-0.3-2%-T	$\sqrt{}$					
		0.6	BFS-0.6-2%-T	$\sqrt{}$					
	OPC	0.0	OPC-0-20%-T	$\sqrt{}$					
		0.3	OPC-0.3-20%-T	$\sqrt{}$					
		0.6	OPC-0.6-20%-T	$\sqrt{}$					
		0.0	FA-0-20%-T	$\sqrt{}$					
20%	FA	0.3	FA-0.3-20%-T	$\sqrt{}$					
		0.6	FA-0.6-20%-T	$\sqrt{}$					
		0.0	BFS-0-20%-T	$\sqrt{}$					
	BFS	0.3	BFS-0.3-20%-T	$\sqrt{}$					
		0.6	BFS-0.6-20%-T	$\sqrt{}$					

More labs are invited to join the 2nd round comparative test program. Thanks for your contributions!