

Réunion Internationale des Laboratoires et Experts des Matériaux

TC 281-CCC: Carbonation of concrete with SMC WG4: Effect of combined actions: load + carbonation

1

The recent progress of WG4

Dr. Philip VAN DEN HEEDE

Magnel-Vandepitte Laboratory, Ghent University (UGent)

on behalf of:

Prof. Ling WANG

China Building Materials Academy

Guimaraes, Portugal, March 9th, 2020

Outline

- 1. The comparative test plan
- 2. The progress of the first round of the interlaboratory comparison
- 3. The status of the annotated bibliography
- 4. Next steps

1. The comparative test plan

The WG4 members had a serious and in-depth discussion in Prague, Czech Republic on September 17, 2019.

- Venue: Club D at the Prague Convention Center, Prague (17:30-18:00) Lobby of the Holiday Inn PCC (18:00-19:00)
- Participants: Ling Wang, Juan Li, Zhendi Wang, Hao Wu, Yin Cao, Nele De Belie, Philip Van den Heede, Ivan Ignjatovic, Siham Kamali-Bernard, Charlotte Thiel, Didier Snoeck, Zengfeng Zhao
- **Topics:** the annotated bibliography on the combined action of load and carbonation, the loading device setup, and the inter-laboratory comparative test

After the Prague meeting, a detailed test plan was proposed and distributed to all members of WG4 on October 10th, 2019.

A Detailed Description of the Comparative Test Method —for the first round of comparative test

- (1) Scope and Applications
- (2) Equipment
- (3) Materials and Mix Design
- (4) Preparation of Test Samples
- (5) Test Procedure
- (6) Report

(1) Scope and Applications

For the second round of comparative testing other compressive stress ratios to consider are 0.30 and 0.60. If available, stress ratio of 0.80 can be also considered.

(2) Equipment

Loading device

- The compressive load shall be applied on a prismatic concrete specimen using a test rig similar to test rigs used for creep loading and described in RILEM recommendation of TC 107-CSP (Fig. 1).
- Different loading rigs are presented for the creep tests, however, the hydro-pneumatic accumulator shown in Fig. 1 is recommended.
- Test rigs, which have the same principle and function and fulfil the requirements of RILEM recommendation of TC 107-CSP can be used as well.
- All test rigs shall guarantee the stability of the external load during the entire test period.

Loading device – existing setups

- Using a torque wrench
- Using a bolt-and-spring system

Carbonation device

The following requirements shall be met:

- Temperature: 20 \pm 2 °C
- Relative humidity: $65 \pm 5\%$
- CO₂ concentration: 2% or 20%

Please note that the carbonation chamber should accommodate at least 9 specimens with loading device (in the second round of comparative test, at least 3 stress ratios 0, 0.30, 0.60 will be considered and 3 specimens for each stress ratio).

In the first comparative test, only CO₂ concentration of 2% is considered.

In the second round of comparative test, natural carbonation and CO_2 concentration of 20% will be also considered.

(3) Materials and Mix Design

Mix proportion

Table1 Mix proportion for the first comparative test

Cement	w/c	Water	Fine aggregate	Coarse aggregate	Superplastizer	Slump
(kg/m ³)		(kg/m ³)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(mm)
330	0.6	198	719	1162	(As needed)	110

Cement type: CEM I 42.5

Super-plasticizer: polycarboxylic admixtures, adjust the amount to make the slump of 110 ± 10 mm.

Please note that in the second round of comparative test, CEM III/B (or CEM I + Fly ash) concrete will be tested.

Pre-test on the proposed mix proportion at CBMA

Raw Materials

(1) Cement: CEM I 42.5

SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	SO ₃	Na ₂ Oeq	f-CaO	Loss	Cl-
22.89	4.51	3.51	62.85	2.42	0.55	0.86	0.98	0.014

Table 2 Chemical composition of cement (%)

Table 3 Physical properties of cement

Fineness (%)	Density	1	Setting time (min)		Flexural strength (MPa)		Compressive strength (MPa)	
	(g/cm ³)		Initial	Final	3d	28d	3d	28d
0.9	3.15	340	193	249	5.2	9.2	25.2	50.7

(2) Fine aggregate

Table 4 Properties of fine aggregate

Apparent density	Bulk density	Fineness modulus	
$2.68 \times 10^3 \text{kg/m}^3$	$1.59 \times 10^3 \text{kg/m}^3$	2.9	

(3) Limestone

Table 5 Properties of coarse aggregate

Size	Apparent density	Bulk density	Gradation
5-20 mm	$2.72 \times 10^3 \text{kg/m}^3$	$1.67 \times 10^3 \text{kg/m}^3$	5~10 mm: 40% by weight 10~20 mm: 60% by weight

(4) Tap water

(5) Superplastizer

Table 6 Properties of superplastizer

Туре	Water-reducing rate	Solid content
Polycarboxylic admixtures	29%	20%

> Mix proportion

Cement	w/c	Water	Fine aggregate	Coarse aggregate	Superplastizer	Slump
(kg/m ³)		(kg/m ³)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(mm)
330	0.6	198	719	1162	0.5	110

Table 7 Mix proportion used in the pre-test at CBMA

Compressive strength of cubic samples

- 3 d compressive strength: 12.3 MPa
- 7 d compressive strength: 21.2 MPa
- 28 d compressive strength: 33.2 MPa

(4) Preparation of Test Samples

Concrete specimen

- > Plain concrete without reinforcement.
- Number: At least 3 cubes and 9 prisms (100×100×300 mm³) in one series. The height of the prisms is determined from stress analysis (See the next page).
 - Group I: 3 cubes for compressive strength test (*f_{cc}*);
 - Group II: 3 prisms for compressive strength test (f_{cp}) ;
 - Group III: 3 for carbonation with the stress ratio 0.45 and 3 for carbonation without load.

If available, more specimens can be made for additional test.

> Specimens with dimension of $100 \times 100 \times 300$ mm³ is recommended.

- Meet the requirement of height-to-width ratio.
- Can get enough samples from the stress-uniformly distributed-area for the following testing and analysis after combined action.

Table 8 Stress analysis results of prisms with different height (cross section 100×100 mm²)

Casting

- All specimens are cast and compacted on a vibrating table in accordance with the procedure described in pr EN-ISO 2736/2.
- > Casting direction for the prismatic samples: horizontal.

Curing

Table 9 Curing process of the concrete specimen in each group

Procedure of the curing	Group I	Group II	Group III
Test aim for each group	3 cubes for compressive strength test (f_{cc})	3 prisms for compressive strength test (f_{cp})	6 for carbonation test with and without load
Curing in the moulds, air temperature of 20 (± 2) °C, covering with a plastic sheet.	1 day	1 day	1 day
In saturated Ca(OH) ₂ solution at $20 (\pm 2)$ °C.	6 days	6 days	6 days
In climate chamber at 20 (\pm 2) °C and 65 (\pm 5) % RH.	21 days	21 days	21 days
In carbonation chamber at predefined CO_2 concentration, 20 °C and 65 (±5) % RH.			28 days

In the second round of comparative test, CEM III/B (or CEM I + Fly ash) concrete will be tested. For CEM III/B(or CEM I + Fly ash) concrete, longer curing period is needed before carbonation test, i.e. 7d of optimal curing in saturated Ca(OH)₂ solution (lime water) followed by 84 days of curing at at 20 (\pm 2) °C and 65 (\pm 5) % RH.

Preconditioning

> For the loaded specimens (3 specimens in Group III)

- Smooth the middle of the upper and lower surfaces for pasting the strain gauges.
- Fix the strain gauges symmetrically in the middle of the both sides on the purpose of monitoring the strain of the specimen.
- Cover the two surfaces with 2 layers of aluminum foil.
- Apply the compressive load with the loading set-ups.

> For the unloaded specimens (3 specimens in Group III)

- Cover the upper and lower surfaces with 2 layers of aluminum foil.
- Leave the other 2 opposite surfaces open for CO₂ ingress.

(5) Test Procedure

- For Group I, test the 28 d compressive strength of cubes (f_{cc}) .
- For Group II, test the compressive strength of prisms (f_{cp}) .
- Put all the specimens of Group III (after preconditioning) in the carbonation device till the carbonation duration.
- Test the 28 d carbonation depth of the specimens .

In the second round of comparative test, additional tests can be done to investigate the loading-induced damage on the micro-scale, changes in chemical composition due to carbonation, etc.

(6) Report

The test report shall contain at least the following information:

- (1) Raw material and composition of the concrete.
- (2) Information of the loading device and the carbonation device.
- (3) Numbers and size of specimens.
- (4) Stress ratio, carbonation environment.
- (5) Test results.
- (6) Any deviation from the procedure described in this method.

2. Progress of the first round of the interlaboratory comparison

• 7 labs confirmed to join the first round of the comparative test.

NO.	Leader	Lab
1	Yan Yao	The State Key Laboratory of Green Building Materials, CBMA, China
2	<u>Nele</u> De Belie	Magnel Laboratory for Concrete, Ghent University, Belgium
3	Ivan Ignjatovic	Laboratory of materials, University of Belgrade, Serbia
4	<u>Siham Kamali</u> -Bernard	Laboratory of Civil and Mechanical Engineering, INSA-Rennes, France
5	<u>Jingzhou</u> Lu	Yantai University, China
6	<u>Talakokula Visalakshi</u>	Bennett University, India
7	<u>Zuquan</u> Jin	Qingdao University of Technology, China

• In addition to the above, several WG4 members consulted and requested the detailed drawings of the device, showed strong interest.

2. Progress of the first round of the interlaboratory comparison

• 7 labs confirmed to join the first round of the comparative test.

NO.	Leader	Lab
1	Yan Yao	The State Key Laboratory of Green Building Materials, CBMA, China
2	<u>Nele</u> De Belie	Magnel Laboratory for Concrete, Ghent University, Belgium
3	Ivan Ignjatovic	Laboratory of materials, University of Belgrade, Serbia
4	<u>Siham Kamali</u> -Bernard	Laboratory of Civil and Mechanical Engineering, INSA-Rennes, France
5	<u>Jingzhou</u> Lu	Yantai University, China
6	<u>Talakokula Visalakshi</u>	Bennett University, India
7	<u>Zuquan</u> Jin	Qingdao University of Technology, China

• In addition to the above, several WG4 members consulted and requested the detailed drawings of the device, showed strong interest.

Prescribed Mix proportion

Table1 Mix proportion for the first comparative test

Cement	w/c	Water	Fine aggregate	Coarse aggregate	Superplastizer	Slump
(kg/m ³)		(kg/m ³)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(mm)
330	0.6	198	719	1162	(As needed)	110

Produced Mix proportion

(casting date: 11/12/2019)

Table1 Mix proportion for the first comparative test

Cement	w/c	Water	Sand 0/4	Limestone 6/20	Superplastizer	Slump
(kg/m ³)		(kg/m ³)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(mm)
330	0.6	198	719	1162	0	215

Achieved compressive strength performance

Comparison compressive strength of cubic samples CBMA

- 3 d compressive strength: 12.3 MPa
- 7 d compressive strength: 21.2 MPa
- 28 d compressive strength: 33.2 MPa

Achieved compressive strength performance

Prescribed curing and testing procedure after casting

Procedure of the curing	Group I	Group II	Group III
Test aim for each group	3 cubes for compressive strength test (f_{cc})	3 prisms for compressive strength test (f_{cp})	6 for carbonation test with and without load
Curing in the moulds, air temperature of 20 (± 2) °C, covering with a plastic sheet.	1 day	1 day	1 day
In saturated Ca(OH) ₂ solution at $20 (\pm 2)$ °C.	6 days	6 days	6 days
In climate chamber at 20 (\pm 2) °C and 65 (\pm 5) % RH.	21 days	21 days	21 days
In carbonation chamber at predefined CO_2 concentration, 20 °C and 65 (±5) % RH.			28 days

Manufacturing of loading frames

Problems encountered:

- Imposed loading levels with hydraulic testing machine could not be maintained.
- Without presence of a load cell in between upper loading plate and specimen, loading levels cannot be verified.
- Hemispherical pit in upper loading plate implies significant loss in plate crosssection in the centre. Repeated loading caused failure of the plate

Technical drawing CBMA

Adopted curing and testing procedure after casting

Procedure of the curing	Group I	Group II	Group III
Test aim for each group	3 cubes for compressive strength test (f_{cc})	3 prisms for compressive strength test (f_{cp})	6 for carbonation test with and without load
Curing in the moulds, air temperature of 20 (± 2) °C, covering with a plastic sheet.	1 day	1 day	1 day
In saturated Ca(OH) ₂ solution at $20 (\pm 2)$ °C.	6 days	6 days	6 days
In climate chamber at 20 (\pm 2) °C and 65 (\pm 5) % RH. 60% RH!	21 days	21 days	21 days +28d
In carbonation chamber at predefined CO_2 concentration, 20 °C and 65 (±5) % RH. 60% RH!			28 days

Load cell and strain gauge monitoring (upon loading)

Load cell and strain gauge monitoring (in CO₂ chamber)

Carbonation depth for unloaded dummy cube after 28d

Adopted curing and testing procedure after casting

Procedure of the curing	Group I	Group II	Group III
Test aim for each group	3 cubes for compressive strength test (f_{cc})	3 prisms for compressive strength test (f_{cp})	6 for carbonation test with and without load
Curing in the moulds, air temperature of 20 (± 2) °C, covering with a plastic sheet.	1 day	1 day	1 day
In saturated Ca(OH) ₂ solution at $20 (\pm 2)$ °C.	6 days	6 days	6 days
In climate chamber at 20 (\pm 2) °C and 65 (\pm 5) % RH. 60% RH!	21 days	21 days	21 days +28d
In carbonation chamber at predefined CO_2 concentration, 20 °C and 65 (±5) % RH. 60% RH!			28 days +28d

Status and Difficulties

- All labs hav a carbonation chamber that meets the requirements.
- But the manufacture of the new loading device took more time than planned time in all labs.
- Most of the 7 labs had no problem to prepare enough concrete specimens for carbonation.
- The experiment work in the 3 Chinese Labs have been strongly influenced by the COVID-19. All PhD students are not allowed to return to labs due to the particularly serious epidemic. The comparative test in the 3 labs is expected to start again as early as the middle of April.
- Discussion on the test results of the first round comparative test may delay to the Sheffield meeting in August.

3. The status of the annotated bibliography

- A draft of the annotated bibliography was distributed to all WG4 members in Setp.2019.
- Several very valuable comments and suggestion were received. The book has been greatly revised and perfected.
 - A new structure was applied for each subchapters (permeability + load & carbonation + load) : 1. Introduction, 2. Selected papers, 3. Summary.
 - A summarizing table was added in each summary section to giving a well-structured overview on the key parameters of the test methods and key conclusions as described in each selected paper.
- For all selected papers, Photos/figures/schematics related to the test method were added in addition to the original abstract for all selected papers.
- > It will be published after final format check before June 2020.

-	
	1211

Content

1. Gas p	ermeability of concrete under mechanical load	3
Introd	uction remarks	3
Select	ed papers	
1.1	Zhongping Wang, Keru Wu, Shiguang Ruan	
1.2	N. BanthiaT, A. Biparva, S. Mindess	4
1.3	H. Meziani and F. Skoczylas	
1.4	Vincent Picandet, Abdelhafid Khelidj, Guy Bastian	
1.5	A. Djerbi Tegguer, S. Bonnet, A. Khelidj, V. Baroghel-Bouny	
1.6	Marta Choinska, Abdelhafid Khelidj, George Chatzigeorgiou, Gilles Pijaudier-Cabot	
1.7	Jiaying Sun, Liguo Lu	
1.8	Chunsheng Zhou, Kefei Li, Jianguo Han	
1.9	Guanbao Tang, Yan Yao, Ling Wang, Suping Cui, Yin Cao	
1.10	Yu Zhang, Xiaomei Wan, Dongshuai Hou, Tiejun Zhao, Yifei Cui	
1.11	Balaji Raghavan, Davood Niknezhad, Fabrice Bernard, Siham Kamali-Bernard	9
1.12	Rui Wang, Xiaojian Gao, Qiyan Li, Yingzi Yang	
Summ	nary	10
2. Carbo	nation of concrete under mechanical load	
Introd	uction remarks	13
Select	ed papers	
2.1	T. Zhao, J. Jiang & X. Wan	
2.2	Wan Xiaomei, Cao Weiqun, Zhao Tiejun, and Fan Hong	
2.3	Wan Xiaomei, Wittmann F. H., and Zhao Tiejun	
2.4	Chen Jingru, Song Xiaocui, Zhao Tiejun, and Tian Li	
2.5	Song Xiaocui, Zhao Tiejun, and Jiang Zhen	
2.6	Wan Xiaomei, Zhao Tiejun, Jiang Fuxiang, and Su Qing	
2.7	Xiaonan Liu, Fuxiang Jiang	
2.8	Niu Jiangang, Niu Ditao, and Liu Wanli	
2.9	Xuejun Wang	
2.10	Ping Zhang, Shuguang Wang, Jiande Han, Weiqing Liu	
2.11	Jin Zuquan, Sun Wei, Zhang Yunsheng, Liu Zhiyong	
2.12	Jingzhou Lu, Li Guo, Ya Liu, Kongfeng Zhu	
2.13	Hao Tian, Guoping Li, Jie Liu, Yongxian Wu	
2.14	François R., and Maso J.C.	
2.15	Linde Yang, Hongke Pan, Yanzhi Zhu, Zhenzhi Wu	
2.16	Xiaoyong Luo, Hongbo Zou, Qingliang Shi	
2.17	Qingliang Shi, Xiaoyong Luo	
2.18	Yongmin Tu, Zhitao Ly	
2.19	Yongmin Tu, Zhitao Ly	
	ary	-

An Annotated Bibliography:

Publications on Durability of Concrete

under Combined Mechanical Loads and Carbonation

Edited by

Yan Yao, Ling Wang, Guanbao Tang, Yin Cao

March 1, 2020

4. Next steps

Time	Tasks
June 2020	Publish the annotated bibliography
July 2020	Finish the first round comparative test
August 2020	3 rd WG4 meeting in Sheffield, UK in conjunction with 74th RILEM Week
	 Discussion of the test results of the first round comparative test
	Test plan of the second round comparative test
March 2021	4 th WG4 meeting in Paris, France in conjunction with 75 years celebration of RILEM
	Discussion of the test results of the second round comparative test

Thanks for your attention !